

Diagnostics in a Digital Age: Promises and Challenges

Rosanna W Peeling Professor and Chair, Diagnostic Research Director, International Diagnostics Centre

www.idx-dx.org

Diagnostics in a Digital Age

• Context:

- Diagnostics for infectious diseases
- Developing world settings
- Disruptive innovation in the developing world
- Recent diagnostics innovation driven by:
 - HIV
 - Global health emergencies
 - Antimicrobial resistance
- Promises and challenges
- The way forward

Disruptive Innovation in the Developing World: The Mobile Phone

Disruptive Innovation in the Developing World: Unmanned Aerial Vehicles for Health

<u>Cost</u>: ~ \$10,000 <u>Payload</u> : 5 lbs <u>Flight time</u>: 30-60 min <u>Range</u>: 20-60 miles

<u>Operation</u>: manual or pre-programmed for specific routes; need almost no room to land, and can even drop packages from a low hover; can deliver 100 HIV POC tests

Diagnostics in a Digital Age

Context:

- Diagnostics for infectious diseases
- Developing world settings
- **Disruptive innovation in the developing world**
- Recent diagnostics innovation driven by:
 - HIV
 - Global health emergencies
 - Antimicrobial resistance
- Promises and challenges
- The way forward

UNAIDS/WHO 2020 Targets for HIV

Global Health Emergencies: Call for Open Technology Platforms

Source: J. Whitehorn

POC Test or test systems are needed to:

- improve the specificity of syndromic management leading to more targeted use of antibiotics
- detect and map AMR for surveillance and guiding treatment
- lower the cost of clinical trials for new drugs

Incentivising Test Development:

- The UK Longitude Prize £ 10 million
- The EC Horizon 2020 Prize: 1 million euros
- The US NIH AMR Prize of up to \$ 20 million

The Ideal Diagnostic Test

- A = Affordable
- S = Sensitive
- **S** = Specific
- U = User-friendly
- **R** = Rapid and robust
- E = Equipment-free
- **D** = Deliverable

Tests: Wish List

Site	Diagnostic test	Wish Tests
GP	 POCT for: Respiratory viruses (influenza, parainfluenza, adenovirus) Diarrhoea (crypto, salmonella) 	Bacterial vs viral infections
Pediatrics	ΡΟϹΤ	Bacterial vs viral infections
Obstetrics	POCT for Group B strep, HSV	
A & E	Nasal swab for influenza; Blood for malaria RDT	Sepsis biomarkers
Travellers	VHF, malaria, dengue, rickettsia etc, depending on travel history	

Diagnostics Methods: Ease of Detection vs Confidence in Diagnosis

HIV Early Infant Diagnosis and Viral Load Product Pipeline

Alere i: Point-of-care Molecular Platform

LONDON SCHOOL # HYGIENE STROPICAL MEDICINE

 <u>Principle</u>: nucleic acid amplification system (iNAAT) that uses a fluorescence-based molecular signal for detection

• Applications:

- Approved: Influenza virus A and B (Europe)
- In clinical trials: Ct/Ng
- In development: Strep A, C. difficile, RSV

• <u>Operation</u>:

- adapted for use by non-laboratory staff
- time to result: 15min (only 2 min of "hands on" time)
- Connectivity:
 - cloud based data storage

Cepheid: A Multi-disease Random Access Real-time PCR Platform

80

20

5

500-1000 Samples per shift

Roche: Cobas Liat RT-PCR System

- <u>Principle</u>: RT-PCR with an internal optical analyser that provides 6 independent optical detection channels for real-time detection and quantification of multiple targets
- Applications:
 - FDA and CE approved: Influenza virus A and B and Strep A
 - In development: HIV viral load, HCV
- Operation:
 - time to result: 15-20 min
 - AC or battery powered
 - Self checks and calibrations with Internal and volume controls
- <u>Connectivity</u>: to be confirmed

Molbio: Truelab Real Time micro PCR System

- Principle: nucleic acid amplification system that uses a fluorescence-based molecular signal for detection
- <u>Applications</u>:
 - Available: MTB, HBV, dengue, Chikungunya, Flu (H1N1), malaria
 - In development: Ct/Ng, HIV viral load

• Operation:

- Sample prep: Trueprep MAG Prep Device and kits 20-25 min.
- Take 6 ul of extract into reaction well of micro PCR chip
- Insert chip into micro PCR analyser
- Amplification with internal controls
- Quantiative detection using fluorophores in 30 min.
- time to result: 60 min
- <u>Connectivity</u>: not known

BioFire Film Array

- **Principle:** 2-stage nested multiplex PCR with reagents dried in a plastic pouch; tests 16 pathogens in a run
- <u>Applications</u>:
 - Respiratory panel*
 - Biothreat Panel
- **Operation**:
 - time to result: 60 min (only 2 min of "hands on" time)
- Connectivity:
 - Interoperable with global information grid

*Respiratory panel: Flu A and B, Parainfluenza 1-3, RSV, adenovirus, human metapneumovirus, corona virus, rhinovirus, enterovirus, *Mycoplasma pneumoniae*, *Bordetalla pertussis, and Chlamydophila pneumoniae*

Chlamydia trachomatis Neisseria gonorrhoea

- Herpes simplex I
- Herpes simplex II
- Treponema pallidum
- Trichomonas vaginalis
- Mycoplasma hominis
- Mycoplasma genitalium
- Ureaplasma urealyticum
- Haemophilus ducreyi

Plasmonic Nanosensors

Molly Stevens (Imperial College)

Rodriguez-Lorenzo et al Nature Materials 11, 604-607 (2012)

Nanotechnologies: The potential for Signatures to identify infections

Nanowire technology:

From a finger-pricked sample of blood, It is possible to detect in 20 min:

- malaria parasites
- distinguish malaria species
- malaria drug resistance

Nanodot technology: can create molecular barcodes with nanodots. These barcodes can represent molecular signatures and allow the system to detect pathogens and their resistance genes or host responses such as cytokines.

Diagnostics in a Digital Age

Context:

- Diagnostics for infectious diseases
- Developing world settings
- **Disruptive innovation in the developing world**
- Recent diagnostics innovation driven by:
 - HIV
 - Global health emergencies
 - Antimicrobial resistance
- Promises and challenges
- The way forward

Promises:

- people-centred health care
- improved access to diagnostics for more evidencebased care
- open technology platforms requiring less capital investment and re-training
- automated surveillance through connectivity

Home Use Oral HIV Tests in the US, 2012

Aspirin? Check. Shampoo? Check. Free HIV Test – Check?

LWA / GETTY IMAGES

Source: time.com

Wearable Biosensors

Reimagining the Future of the Diagnosis of Viral Infections

- 1,234 paired serum samples from laboratory confirmed dengue patients, archived between 2005-2011
- Accurately identified >90% of dengue cases from a single serum specimen collected during the first 10 days of illness by using either:
 - DENV-RT-PCR + IgM ELISA

or

NS1 antigen ELISA + IgM ELISA

Days Post-Onset of Illness (DPO)										
					_					
0	1	2	3	4	5	6	7	8	9	10
							-	_		
Febrile Phase of Illness				Con	valesce	ent Ph	ase of	illness		

Specimen from suspected dengue case by DPO	lgM anti- DENV	RT-PCR or NS1	Percent Positive	Decision
0-3	-	+	79-90%	One-Test
4-7	+	+	95-100%	Two-Test
>7	+	-	93-100%	One-Test

Early-Warning Sensing Systems for Infectious

Early-Warning Sensing Systems for Infectious Diseases in the UK

Connectivity Solutions for Rapid Point-of-care Tests

Smartphone dongles performed a point-of-care HIV and syphilis test in Rwanda from finger prick whole blood in 15 minutes, operated by health care workers trained on a software app.

-Image courtesy of Samiksha Nayak for Columbia Engineering

Traditional centralized testing model in Zimbabwe

Connectivity Pilot in Zimbabwe

MOH, QA Managers, Reference Labs, NPHL, SCM, Provincial Medical Directors, District and Provincial Hospitals

The Challenges:

- technological innovations not accompanied by innovation in service delivery
- need to modify patient pathways more difficult to make changes to health care systems
- data governance

Medical Device Connectivity Ecosystem

- strive to capture all the data feeds which either directly or indirectly impact patient care
 - electronic patient management systems
 - treatment decisions
 - Early warning or public health alerts
- couple these data feeds with:
 - supply chain management systems
 - resources allocation
- Enable government health planners, private and public funding organizations to seamlessly access either patient identified or de-identified data depending upon need but rules needs to be established for data access

The Way Forward

- New sample in-answer out nucleic acid amplification technologies offer improved performance over antigen detection POCTs and the potential to test for multiple pathogens using a single specimen
- Connectivity solutions linking data from diagnostic laboratories and POC test readers/devices provide opportunities for automated surveillance systems
- Promises of diagnostics in a digital age include more patient- centred care, improved access to diagnostics for more evidence-based care, and automated surveillance through data connectivity
- The challenges include modifying care pathways and data governance

Acknowledgement

LSHTM/IDC: Maurine Murtagh, Ben Cheng, Debra Boeras, Catherine Wedderburn, Olivia Varsaneux, Freddy Bates

Funding: UNITAID, WHO, UK EPSRC