The Clinical Need for Antibiotic Resistance Related Diagnostics

Professor Mark H. Wilcox

Leeds Teaching Hospitals, University of Leeds, & Public Health England, UK
Facts (i)

• IVDs will be the world’s largest med-tech sector in 2018
• Beating cardiology and diagnostic imaging to the top spot
• Annual sales of $54.5 billion
• 5 yr compounded annual growth rate 4.8%
• Roche is the clear IVD market leader (18% market share)
• Projected 2018 sales $9.9 billion

Facts (ii)

[Graph showing IVD Market Growth Forecast 2011–2016*]

*Five-year compound annual growth rate
Abbreviations: POC, point-of-care; POL, physician office lab.
Source: Enterprise Analysis Corporation

[Graph showing the fastest growing market segments: Molecular 11%, Anatomic Pathology 10%, POCT/POL 9%, and regions: Asia Pacific 12%, Latin America 8%, North America 6.5%, Europe, Middle East, and Africa 4.8%, Japan 2%]

[Images of market segments: Immunohemistry, Clinical Chemistry, Molecular Diagnostics, Hematology, Microbiology, Coagulation, Other Clinical Instruments]

http://www.aacc.org/publications/cln/2012/ExpolIssue/Pages/RecordBreaking2012ClinicalLab.aspx#
NATIONAL STRATEGY
FOR COMBATING ANTIBIOTIC-RESISTANT BACTERIA

GOAL 1: Slow the Development of Resistant Bacteria and Prevent the Spread of Resistant Infections ...

GOAL 2: Strengthen National One-Health Surveillance Efforts to Combat Resistance

GOAL 3: Advance Development and Use of Rapid and Innovative Diagnostic Tests for Identification and Characterization of Resistant Bacteria ..

GOAL 4: Accelerate Basic and Applied Research and Development for New Antibiotics, Other Therapeutics, and Vaccines ..

GOAL 5: Improve International Collaboration and Capacities for Antibiotic Resistance Prevention, Surveillance, Control, and Antibiotic Research and Development

September 2014
‘diagnostics’ are mentioned 40 times in the UK’s Five Year Antimicrobial Resistance (AMR) Strategy 2013–18.
CE marking diagnostics (IVDs)

- CE Marking based **only on self-declaration**

- **No systematic safety net** to identify poor IVD performance

- **No clear requirement to demonstrate** IVD has good clinical utility

BMJ 2013;346:f836 doi: 10.1136/bmj.f836
Widely used molecular pathogen detection / screening tests

- HPV 16/18
- Influenza
- HSV
- RSV

- *M. tuberculosis*
- *C. trachomatis, N. gonorrhoeae, T. vaginalis*
- MRSA screening
- *C. difficile ‘screening’*
- Group A Strep
Acute trust toolkit for the early detection, management and control of carbapenemase-producing Enterobacteriaceae
Each rectal swab (n=816) was cultured using:

- Chromogenic media for CRE (Carba-SMART ChromID, BioMerieux)
- Non-chromogenic media (MacConkey with an ertapenem disc)
- PCR assay (CheckDirect, Checkpoints)
What could be the impact of modern and future diagnostics on antibiotics stewardship?

Which would you prefer to know?

- There is an infection
- There is not an infection
- There is a specific pathogen
- There is not a specific pathogen
- There is a specific resistance profile
- There is not a specific resistance profile
Molecular diagnostics

Rapid
Sensitivity
Specificity
Cost-effectiveness

Negative predictive value
Positive predictive value
Multivariate sensitivity analyses:
Cost-effectiveness of POC CD4 testing compared with laboratory testing

POC CD4 test cost = S13
POC CD4 test cost = S26
POC CD4 test cost = S52

CD4 test and result return (%)

Cost-saving
ICER< 1 x GDP (very cost-effective)
ICER< 3 x GDP (cost-effective)
ICER> 3 x GDP or more expensive, less effective
(not cost-effective)

http://127.0.0.1:8081/plosone/article?id=info:doi/10.1371/journal.pone.0117751
Potential of molecular tools for antibiotic stewardship
Surviving Sepsis Campaign

NATIONAL STRATEGY FOR COMBATING ANTIBIOTIC-RESISTANT BACTERIA
Randomized Trial of Rapid Multiplex Polymerase Chain Reaction–Based Blood Culture Identification and Susceptibility Testing

Ritu Banerjee,¹,a Christine B. Teng,²,a Scott A. Cunningham,³ Sherry M. Ihde,³ James M. Steckelberg,⁴ James P. Moriarty,⁵ Nilay D. Shah,⁵ Jayawant N. Mandrekar,⁶ and Robin Patel³,⁴

¹Division of Pediatric Infectious Diseases, Mayo Clinic, Rochester, Minnesota; ²Department of Pharmacy, National University of Singapore and Tan Tock Seng Hospital, Singapore; ³Division of Laboratory Medicine and Pathology, ⁴Division of Infectious Diseases, ⁵Division of Health Care Policy and Research, and ⁶Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
Effect of testing strategy/stewardship on time to organism id, phenotypic susceptibility results, & first appropriate modification of antimicrobial therapy

<table>
<thead>
<tr>
<th>Median time in hours (IQR) to:</th>
<th>control</th>
<th>rmPCR</th>
<th>rmPCR + stewardship</th>
</tr>
</thead>
<tbody>
<tr>
<td>organism id</td>
<td>22.3 (17–28)</td>
<td>1.3 (0.9–1.6)*</td>
<td>1.3 (0.9–1.6)*</td>
</tr>
<tr>
<td>de-escalation</td>
<td>39 (19–56)</td>
<td>36 (22–61)</td>
<td>20 (6–36)**</td>
</tr>
<tr>
<td>escalation</td>
<td>18 (2–63)</td>
<td>4 (1.5–24)*</td>
<td>4 (1.8–9)*</td>
</tr>
</tbody>
</table>

Data for subset of subjects with organisms represented on rapid multiplex (rmPCR) panel (n = 481). Time 0 = positive Gram stain result reported. *P < .05 vs control; **P < .05 vs control & rmPCR groups.

Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study

Summary

Background Slow and cumbersome laboratory diagnostics for Mycobacterium tuberculosis complex (MTBC) risk delayed treatment and poor patient outcomes. Whole-genome sequencing (WGS) could potentially provide a rapid and comprehensive diagnostic solution. In this prospective study, we compare real-time WGS with routine MTBC diagnostic workflows.
• Full WGS diagnostics could be generated in a median of 9 days (IQR 6–10)
• Median 21 days (IQR 14–32) faster than final reference laboratory reports
• Cost of £481 per culture-positive specimen versus £518 for routine diagnosis
The number needed to test