9.30-10.00
Lean Thinking in Healthcare

Dr Kate Silvester BSc MBA FRCOphth
Healthcare Systems Engineer

Friday 27th May 2016
Oxford
Key question:

• Does a disruptive technology allow us to deliver **better value** to the patient:
 • right care,
 = ‘feeling better’
 • on time,
 • every time,
 • in full,
 • at a cost the patient can afford?
 • £
 • time is money
Patient Story

• 82 year old, previously well and very active
• Mild heart failure, on diuretic for 9 years
• Lives at home carers ‘popping-in’ every day
• Increasing lethargy, loss of appetite and weakness over 5 days.
• Apyrexial
• Not responded to rehydration and rest
What do the patient and carer need?

• Diagnosis
• Prognosis
• Plan

• (Treatment
• Monitoring
• Maintenance)

What is the process for getting this at 08:00?
Process for getting a diagnosis, prognosis and plan

Which route would you take?
Lean = no waste in the process

• Value-adding: ‘activity that will make the patient feel better’
• Non-value adding activity (waste)
 • Transport = moving patient and information
 • Inventory = patients, information, supplies stacked up waiting
 • Motion = moving the staff and resources
 • Waiting
 • Over-production – making (taking) too much
 • Over-processing – repeating work
• DEFECTs: failure to produce right care, on time, every time, in full
 • Defects/patient
 • Defects/100 patients
 • (1/yield)
Right care, on time?

- Patient is at risk of delays
 - Sepsis: Every hour of delay to antibiotic = 7% increase in death rate
 - Hyponatraemia
 - Immobility = physical and mental decompensation

- Carer can’t delay:
 - Other patients to care for,
 - Has to get to work,
 - or back to family.

- What is the cost of delay to the patient, carer and taxpayer?
Which route?

• GP route
 • GP stymied by lack of diagnostics.
 • Delays +++

• 111/out of hours:
 • No value to patient or carer

• QED = A&E
Issues for patients & carers

- Getting through to GP
- Lunchtime visits
- Waiting for transport.

- Default: dial 999

Test of change

GPs responding to calls in real time
+ ‘floating GP = home visits’

Ambulance
No triage: ‘transport patient now’

Impact of delays on patients 80 years + in Sheffield 2009
Monitoring and Maintenance

- 68 year old diabetic (type 2)

Why bother.........?
Blood Tests
Process for Basic Chemistry tests

A&E
- Blood test indicated
 - Blood test Requested: 2 minutes
 - Blood Taken: 12 minutes
 - Blood Transported: 3 minutes
 - Blood Processed: 27 minutes
 - Result Available: 1 minute
 - Clinician acts on result: 1 minute
 - Give patient diagnosis, prognosis plan

Wards
- 4 hr
 - 24 hrs
 - 1.5 hr
 - 20 mins
 - 30 mins
 - 12 hrs

OP
- 1 to 4 hrs
 - 1.5 hr
 - 20 mins
 - 30 mins
 - 3 days
 - weeks

GP
- ?
 - 4 hrs
 - 20 mins
 - 30 mins
 - 24 hrs
 - days

03/06/2016 Kate Silvester Ltd, UK Diagnostics Forum, Oxford May 2016
Lead times in Lab: basic chemistry: ‘urgent’ only
Issues with this process:

• **WASTE:**
 - Transport
 - Inventory: lots of samples waiting, lots of patients waiting – some in hospital beds….
 - Motion:
 - WAITING: lots of patients, carers and clinicians waiting
 - Over-production: 10 mls when only μl needed….
 - Over-processing:
 - Tests requested and blood taken before history and examination….
 - Lab’s nightmare is request for ‘add-on’….
 - **Defects:**
 - Right test, on time, every time, in full?
 - Delays: what is happening to the K+?

• Decisions made on out-of-date tests.
• Big implications for safety

• Is the end-to-end process effective or efficient?
Definitions

• Efficiency =
 • Resource Hours used doing value-adding work / Resource hours available
 • Cost of hours available / value-adding activity = unit cost?

• Productivity = yield x efficiency.

• What is the yield from this process?
 • How many tests help deliver the right care, on time, every time, in full?

• So the current process is neither efficient or productive.
Key learning: Measures: 3 views

1. What the patient measures

2. What the staff, department or organisation measures:
 - Dpt. cost / value-adding activity = unit cost
 - Efficiency: Resource hours used doing value-adding work
 Resource hours available

3. System measure
 - Productivity: yield x efficiency
 - Cost of the inventory or waiting

Yield and lead time
Right care
On time
Every time
In full

Kate Silvester Ltd, UK Diagnostics Forum, Oxford May 2016
Point of Care testing

- Potential to remove the waste of transport and waiting therefore
 - reduce defects in care (right care, on time, every time, in full)
 - increase healthcare system productivity

- Challenge: diagnosis:
 - Wide range of tests needed including imaging:
 - Symptom and signs define ‘Panel of tests’
 - Abdo’ pain: basic chemistry, LFTs, amylase, FBC, US, CT
 - Chest pain: basic chemistry, cardiac enzymes, ECG, CXR
 - ? DVT/PE: D-dimer (+/- US, CTPA)
 - STDs

- Value in monitoring and maintenance:
 - Only a small range of disease specific tests required
 - Diabetes: glucose, HbA1C, (renal function?)
 - Rheumatoid conditions (blood panel and ultra sound)
 - Neutropenic sepsis
 - Recurrent UTIs

- Calibration: data transfer to patient, GP, Lab, monitoring variance
 - Time series data for each patient & machine = statistical process control: very effective and efficient
 - Group data variance POCT v Lab v National = comparative statistical tests e.g. ANOM, ANOVA etc.