Using Evidence to Support the Business Case: the route to adoption

Christopher P Price

Department of Primary Care Health Sciences

University of Oxford

Technology Adoption in Healthcare innovation improving patient outcomes

- Care of individual patients
- Maximising benefit
- Minimising risk
- Reasonable cost

Innovation, Adoption and Value

Invention: an idea made manifest

Innovation: an idea applied successfully in practice

introducing a new method or process new 'stuff' made useful enhancing value

* Technology, of itself, is not innovative

★ Innovation involves process change

Adoption is the process of translation from invention to innovation

Definition of Value

The regard that something is held to deserve:

- importance or worth
- material or monetary worth
- the worth of something compared to its price

Perspectives on Biomarker Adoption

The Process from Invention to Practice an NHS insight into innovation

INVENTION

The originating idea for a new service or product, or a new way of providing a service

ADOPTION

Putting the new idea, product or service into practice, including prototyping, piloting, testing and evaluating its safety and effectiveness

DIFFUSION

The systematic uptake of the idea, service or product into widespread use across the whole service.

Adoption: What it is not

The originating idea for a new service or product, or a new way of providing a service

ADOPTION

Putting the new idea, product or service into practice, including prototyping, piloting, testing and evaluating its safety and effectiveness

DIFFUSION

The systematic uptake of the idea, service or product into widespread use across the whole service.

The Gartner Hype Cycle

Hype Cycle of Emerging Technology

Source: Gartner Group

Product Lifecycle and Adoption

Three Phases of Technology Adoption

Phase	Definition/Examples
Technology assessment	Evaluation of results of scientific testing
	• Efficacy
	Cost benefit analysis
	 Specification of the target population
Technology deployment	Putting technology into practice
	 Development of new work routines
	Integration with existing technologies and routines
Technology monitoring	Post application monitoring
	Evaluation of outcomes
	 Detection of anomalies

Technology Adoption in Healthcare the NHS approach

- Manage the implementation and systems integration issues.
- Identify where additional changes to clinical pathways and services are required.
- Unlock the full benefits of the technologies

Innovation in Industry causes of failure: cultural infrastructure

- Poor leadership
- Poor organisation
- Poor communication
- Poor empowerment
- Poor knowledge management

Innovation in Industry causes of failure: innovation process

- Poor goal definition
- Poor alignment of actions to goals
- Poor participation in teams
- Poor monitoring of results
- Poor communication/access to information

Failure of Innovation in Health Care where are the health care entrepreneurs?

- Public insurance programs that are oriented to volume of care and not value
- Inadequate information about the quality of care

Organisational and Behavioural Barriers to Medical Technology Adoption

- Decision making processes
- Innovation Culture
- Communication
- Prioritisation
- Evidence
- Reimbursement
- Budget silos
- Decommissioning
- Implementation planning

Organisational and Behavioural Barriers to Medical Technology Adoption

- Decision making processes
- Innovation Culture
- Communication
- Prioritisation
- Pathway definition (and deviations)
- Evidence
- Reimbursement
- Decommissioning
- Implementation planning

Needs assessment

Prioritisation: The Commissioning Cycle

Commissioning/Adopting a New Biomarker or.....making the business case

- Identifying the unmet need
- Making the case for using a test
- Impact on clinical decision making
- Impact on health outcome
- Economic considerations
- Implementation plan
- Performance management

Diagnostic Services why do doctors order tests?

PATIENT

OUTCOME

Diagnostic Services informing decisions across the care pathway

The Evidence Based Laboratory Medicine Cycle

Innovation and Adopting a New Test evidence requirements

Commissioning (Adopting) a New Biomarker focussing on the care pathway

Evidence, Innovation and Adopting Diagnostics

Commissioning (adopting) a New Biomarker four stages of commissioning

- I assess health care need
 - and expected outcomes
- II specify services required
 - and resource requirement
- III secure services
 - and practice change including resource allocations
- IV monitor and evaluate outcomes
 - including resource allocations

Adopting a New Service the business case questions

- Is the test any good?
- Why do you want the test?
- What will you do with the result?
- What decision will you make?
- What action will you take?
- What outcome would you expect?
- What process and resource change will be required?

Adopting a New Service the practical questions

- Research question (clinical need)?
- Test? has it been approved?
- Turnaround time? what is the care pathway need?
- Decision? Has this been thought through?
- Action? Is it feasible?
- Process change? Is it achievable?
- Resource requirement and disinvestment? !!!!!!
- Outcome expected? Do we need a pilot? Should we model?

Asking the Right Question formulating an answerable question (PICO)

- Population
- Indicator (test, intervention, etc)
- Comparator
- Outcome

Identifying the Unmet Need diagnostic triage in primary care

- P breathless patients in primary care
- I plasma BNP
- C two cardiologists review
- O diagnosis of heart failure

Identifying the Unmet Need risk of heart failure with chemotherapy

- P patients on chemotherapy
- I plasma BNP
- C two cardiologists review
- O early detection

Identifying the Unmet Need guide therapy and health outcome

- P patients with heart failure
- I plasma BNP
- C current clinical practice
- O achieve target BNP value

Adopting a New Biomarker what else do we need to know?

PATIENT

Central laboratory or point-of-care testing?

OUTCOME

Diagnostic Performance of NT-ProBNP rule out of heart failure in primary care

Diagnostic accuracy of NT-proBNP

- Sensitivity 0.90 (95%CI 0.81-0.96)
- Specificity 0.60 (95%CI 0.50-0.70)
- LR+ 2.28 (95%CI1.82-2.86)
- LR- 0.16 (95%CI 0.09-0.30)

Diagnostic Performance of NT-ProBNP impact of different settings

Adopting a New Service performance management requirements

- Background information e.g. disease prevalence
- Test utilisation
- Decision making
- Diagnoses made (disease registry)
- Therapeutic intervention initiated
- Resource utilisation inc. disinvestment
- Clinical outcomes (morbidity, mortality, surrogates)

Natriuretic Peptides and Heart Failure what is Scenario Generator?

Simulation software designed to:

- Model how services of a whole healthcare system are, or might be used, to support care pathways
- Test / compare scenarios of how that model of the healthcare system might respond to changes in population, health, technology, practice and models of care
- Show impact of scenarios in terms of throughput, transaction time, cost and staffing

Data Requirements for Modelling commissioning a natriuretic peptide service

- Pathway activities/sequence
- Workflow referral rates
- Unit Costs / Tariffs
- No of years to be simulated
- Starting population figures and growth
- Disease prevalence
- ICD 10 codes
- Incidence %
- Predicted test usage

A Natriuretic Peptide Service outline service specification

- BNP or NT-proBNP
- Turnaround time of 24 hours
- POCT option not requested

•

15,372

lacktriangle

Proposal to run service in two laboratories

Heart Failure Diagnostic Pathway prior to access to natriuretic peptide service

Heart Failure Diagnostic Pathway with access to natriuretic peptide service

Simulation Findings

before and after introduction of natriuretic peptide service

Heart Failure Pathway - As Is With Echo

Step	Year 1 Activity	Year 2 Activity	Year 3 Activity	Year 4 Activity	Year 5 Activity	Unit cost	Year 1 Step Cost	Year 2 Step Cost	Year 3 Step Cost	Year 4 Step Cost	Year 5 Step Cost
Heart Failure	15372	15580	15794	16005	16097		20	03	20	20	20
Primary Care	15372	15580	15794	16005	16097	£36	£553,392	2560,880	£568,584	£576,180	£579,492
Cardio Outpatients	3611	3711	3734	3767	3767	£215	£776,365	2797,865	£802,810	£809,905	£809,905
GP Stable	8392	8526	8666	8774	8817		93	93	92	03	93
Discharged 1	1461	1460	1488	1451	1489		93	93	92	03	93
Open Access Echo	13845	14017	14154	14383	14511	£87	£1,204,515	£1,219,479	£1,231,398	£1,251,321	£1,262,457
No Heart Failure	5519	5594	5640	5780	5791	20	93	93	92	03	93
Total	63572	64468	65270	66165	66569		£2,534,272	£2,578,224	£2,602,792	£2,637,406	\$2,651,854

BNP Pathway - To Be With Echo

Step	Year 1 Activity	Year 2 Activity	Year 3 Activity	Year 4 Activity	Year 5 Activity	Unit cost	Year 1 Step Cost	Year 2 Step Cost	Year 3 Step Cost	Year 4 Step Cost	Year 5 Step Cost
Heart Failure	15372	15580	15794	16005	16097	£0	20	20	20	92	£0
Primary Care	15372	15580	15794	16005	16097	£36	£553,392	£560,880	£568,584	2576,180	£579,492
Cardio Outpatients	900	900	994	941	983	£215	£193,500	£193,500	£213,710	£202,315	£211,345
GP Stable	5825	5898	6016	6095	6065	20	20	20	20	92	20
Discharged 1	9260	9394	9480	9627	9734	20	20	20	20	92	20
Open Access Echo	5515	5614	5647	5803	5739	£87	£479,805	£488,418	£491,289	£504,861	£499,293
BNP	15372	15580	15794	16005	16097	£20	£307,440	£311,600	£315,880	£320,100	£321,940
No Heart Failure	287	288	298	283	298	20	920	920	920	92	£0
Total	67903	68834	69817	70764	71110		£1,534,137	£1,554,398	£1,589,463	£1,603,456	£1,612,070

Heart Failure - Summary

Heart Failure Model	Year 1 Step Cost	Year 2 Step Cost	Year 3 Step Cost	1	Year 5 Step Cost
As Is Model	£2,534,272	£2,578,224	£2,602,792	£2,637,406	£2,651,854
BNP Model - scenario 1	£1,534,137	£1,554,398	£1,589,463	£1,603,456	£1,612,070
			<u> </u>		
Savings Potential Scenario 1 - Full Year	-£1,000,135	-£1,023,826	-£1,013,329	-£1,033,950	-£1,039,784

A Natriuretic Peptide Service the business case

Screening Diagnosis Prognosis Monitoring

- Rule out diagnosis of heart failure in primary care
- Reduce demand for echocardiography
- Reduce associated cardiology referral
- Reduce time-to-diagnosis
- Improve accuracy of diagnosis
- Provide value-for-money

Resource Utilisation and Financial Flows health care policy: the next decade

Resource Utilisation at a Provider Level analysed at a pathway/condition/life level

Diagnostic Tests and Resource Utilisation analysed at an episode/procedural level

POCT and Resource Utilisation investing and dis-investing

Drugs and blood products

Medical and nursing staff

Imaging

Laboratory

Operating room

Clinical support

Ward and clinic costs

Overheads

Performance Management of a Service

- Laboratory service
- number of tests performed, turnaround time
- Clinical application
- - test utilisation normals, abnormals, repeats etc
- Change of practice
- echo utilisation; how many positives and negatives
- cardiology referrals
- Clinical outcomes
- diagnoses made, diagnoses missed
- Economic outcomes
 - change in hospital contracts, disinvestment

Audit and Adopting New Biomarkers

Thank you!